Shifting Sources and Fates of Carbon With Increasing Hydrologic Presses and Pulses in Coastal Wetlands

Author:

Anderson Kenneth J.1ORCID,Kominoski John S.1ORCID,Osburn Christopher L.2ORCID,Smith Matthew A.3ORCID

Affiliation:

1. Institute of Environment & Department of Biological Sciences Florida International University Miami FL USA

2. Department of Marine, Earth, and Atmospheric Sciences North Carolina State University Raleigh NC USA

3. Institute for Water Resources U.S. Army Corps of Engineers Alexandria VA USA

Abstract

AbstractCoastal ecosystems are rapidly shifting due to changes in hydrologic presses (e.g., sea‐level rise) and pulses (e.g., seasonal hydrology, disturbances, and restoration of degraded wetlands). Changing water levels and sources are master variables in coastal wetlands that can alter carbon concentrations, sources, processing, and export. Yet, how long‐term increases in water levels from marine and freshwater sources influence dissolved organic carbon (DOC) concentrations and dissolved organic matter (DOM) composition is uncertain. We quantified how long‐term changes in water levels are affecting DOC concentration (2001–2021) and DOM composition (2011–2021) differently across the Florida Everglades. DOC concentrations decreased with high water depths in peat marshes and increased with high water levels in marl marshes and across mangroves, and these relationships were reproduced in freshwater peat marshes and shrub mangroves. In the highly productive riverine mangroves, cross‐wavelet analysis highlighted variable relationships between DOC and water level were largely modulated by hurricane disturbances. By comparing relationships between water level and DOC concentrations with carbon sources from DOM fluorescence indices, we found that changing water sources between the dry and wet season shift DOM from algal to detrital sources in freshwater marshes, from detrital marsh to detrital mangrove sources in the brackish water ecotone, and from detrital mangrove to algal marine sources in downstream mangroves. As climate change and anthropogenic drivers continue to alter water levels in coastal wetlands, integrating spatial and temporal measurements of DOC concentrations and DOM compositions is essential to better constrain the transformation and export of carbon across these coastal ecosystems.

Funder

National Science Foundation

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3