Characteristics and Mechanisms of Typhoon‐Induced Decomposition of Organic Matter and Its Implication for Climate Change

Author:

Lao Qibin123ORCID,Chen Fajin123ORCID,Jin Guangzhe123ORCID,Lu Xuan123,Chen Chunqing123,Zhou Xin123,Zhu Qingmei123

Affiliation:

1. College of Ocean and Meteorology Guangdong Ocean University Zhanjiang China

2. Key Laboratory for Coastal Ocean Variation and Disaster Prediction Guangdong Ocean University Zhanjiang China

3. Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea Department of Education of Guangdong Province Guangdong Ocean University Zhanjiang China

Abstract

AbstractWe recently reported that decomposition (as a carbon source) of organic matter (OM) is the dominant process in coastal waters after typhoons, which is contrary to phytoplankton blooms (as a carbon sink) in previous studies. However, the characteristics and mechanisms of typhoon‐induced decomposition and the question whether the decomposition mainly decompose particulate OM (POM) or dissolved OM (DOM) are still unclear. To address these issues, physicochemical parameters and multiple isotopes in the northern South China Sea were investigated before and after Typhoon Merbok (2017). After the typhoon, the chlorophyll‐a (Chl‐a) level decreased (25%), whereas the upwelled bottom/sedimentary OM (SOM) increased in the nearshore due to the severe disturbance caused by the typhoon. In contrast, the Chl‐a level increased (over 3 times) offshore. Nevertheless, a positive apparent oxygen utilization value occurred in both nearshore and offshore, suggesting that decomposition of OM was the dominant biogeochemical process regardless of whether phytoplankton blooms occurred after the typhoon. The decomposed POM in the nearshore was mainly from the SOM, while the offshore was primarily from locally produced fresh phytoplankton. The decomposition of OM contributed to 66% of the total oxygen consumption in the nearshore, while it contributed to 36% (dominated by the decomposition of POM, accounting for 25%) in the offshore. This study suggests that typhoon‐induced decomposition might be dominated by POM, which is not conducive to the storage of OM in sediments. It means that the capacity of sediments as a carbon sink will be weakened under global warming (increasing typhoon events).

Publisher

American Geophysical Union (AGU)

Subject

Paleontology,Atmospheric Science,Soil Science,Water Science and Technology,Ecology,Aquatic Science,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3