Impacts of Hydrology and Extreme Events on Dissolved Organic Carbon Dynamics in a Heavily Urbanized Estuary and Its Major Tributaries: A View From Space

Author:

Cao Fang12,Tzortziou Maria1ORCID

Affiliation:

1. Department of Earth and Atmospheric Sciences The City College of New York, City University of New York New York NY USA

2. State Key Laboratory of Estuarine and Coastal Research East China Normal University Shanghai China

Abstract

AbstractDissolved organic matter and its colored component, Colored Dissolved Organic Matter (CDOM), play a major role in global carbon budgets, and their fluxes provide an essential link between terrestrial and aquatic biogeochemical cycles. Satellite observations can uniquely capture the hydro‐biogeochemical connectivity of terrestrial and aquatic landscapes, across scales. Yet, accurate satellite retrievals of CDOM and dissolved organic carbon (DOC) dynamics remain challenging in urbanized estuaries and coasts. Here, we present an advanced unified algorithm for space‐based retrieval of coastal CDOM and DOC dynamics and its application in Long Island Sound—one of the world's most heavily urbanized estuaries that is becoming increasingly vulnerable to climate change stressors. A rich bio‐optical data set, encompassing a wide range of environmental conditions, was integrated into the algorithm training to retrieve DOC concentrations and CDOM spectral shape (i.e., spectral slope S275–295)—a proxy for DOC quality. The new algorithms were applied to full‐resolution satellite imagery from the Sentinel‐3 Ocean and Land Color Instrument (OLCI) after thoroughly evaluating the performance of six ocean color atmospheric correction approaches (ACOLITE, BAC, C2RCC, MUMM, l2gen, and Polymer). Evaluation of the algorithms yielded mean absolute percent differences of 28%, 12%, and 10% for aCDOM(300), S275–295, and DOC, respectively. Application of the algorithms to multi‐year satellite OLCI imagery captured, for the first time, the coupled impact of seasonal transitions, wind regimes, freshwater inputs, anthropogenic disturbances, and hydrological extremes (both intense precipitation and droughts) on DOC fluxes and CDOM quality at the ecosystem scale. Results have important implications for improved predictions of coastal biogeochemical fluxes in complex urban−estuary systems.

Funder

Earth Sciences Division

Publisher

American Geophysical Union (AGU)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3