A Semi‐Mechanistic Model for Partitioning Evapotranspiration Reveals Transpiration Dominates the Water Flux in Drylands

Author:

Reich E. G.1ORCID,Samuels‐Crow K.1ORCID,Bradford J. B.2ORCID,Litvak M.3ORCID,Schlaepfer D. R.24ORCID,Ogle K.15

Affiliation:

1. School of Informatics, Computing, and Cyber Systems Northern Arizona University Flagstaff AZ USA

2. United States Geological Survey Northwest Climate Adaptation Science Center & Southwest Biological Science Center Flagstaff AZ USA

3. Department of Biology University of New Mexico Albuquerque NM USA

4. Center for Adaptable Western Landscapes Northern Arizona University Flagstaff AZ USA

5. Center of Ecosystem Science and Society Northern Arizona University Flagstaff AZ USA

Abstract

AbstractPopular evapotranspiration (ET) partitioning methods make assumptions that might not be well‐suited to dryland ecosystems, such as high sensitivity of plant water‐use efficiency (WUE) to vapor pressure deficit (VPD). Our objectives were to (a) create an ET partitioning model that can produce fine‐scale estimates of transpiration (T) in drylands, and (b) use this approach to evaluate how climate controls T and WUE across ecosystem types and timescales along a dryland aridity gradient. We developed a novel, semi‐mechanistic ET partitioning method using a Bayesian approach that constrains abiotic evaporation using process‐based models, and loosely constrains time‐varying WUE within an autoregressive framework. We used this method to estimate daily T and weekly WUE across seven dryland ecosystem types and found that T dominates ET across the aridity gradient. Then, we applied cross‐wavelet coherence analysis to evaluate the temporal coherence between focal response variables (WUE and T/ET) and environmental variables. At yearly scales, we found that WUE at less arid, higher elevation sites was primarily limited by atmospheric moisture demand, and WUE at more arid, lower elevation sites was primarily limited by moisture supply. At sub‐yearly timescales, WUE and VPD were sporadically correlated. Hence, ecosystem‐scale dryland WUE is not always sensitive to changes in VPD at short timescales, despite this being a common assumption in many ET partitioning models. This new ET partitioning method can be used in dryland ecosystems to better understand how climate influences physically and biologically driven water fluxes.

Funder

National Science Foundation

U.S. Department of Energy

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3