Compost Amendment to a Grazed California Annual Grassland Increases Gross Primary Productivity Due To a Longer Growing Season

Author:

Fenster Tommy L. D.123ORCID,Torres Isabel14ORCID,Zeilinger Adam5ORCID,Chu Housen6ORCID,Oikawa Patty1ORCID

Affiliation:

1. Department of Earth and Environmental Sciences California State University East Bay Hayward CA USA

2. Now at Department of Plant Sciences University of California Davis CA USA

3. Now at Ecdysis Foundation Estelline SD USA

4. Now at School of Earth and Space Exploration Arizona State University Tempe AZ USA

5. Unaffiliated Kensington CA USA

6. Climate and Ecosystem Sciences Division Lawrence Berkeley National Lab Berkeley CA USA

Abstract

AbstractCompost amendment to rangelands is a proposed nature‐based climate solution to increase plant productivity and soil carbon sequestration. However, it has not been evaluated using quasicontinuous ecosystem‐scale measurements. Here, we present the first study to utilize eddy covariance and footprint partitioning to monitor carbon exchange in a grassland with and without compost amendment, monitoring for 1 year before and 1 year after treatment. Compost amendment to an annual California grassland was found to enhance net ecosystem removal of carbon. Our study confirmed that compost‐amended grasslands, similar to nonamended grasslands, are net carbon sources to the atmosphere; however, the amendment appears to be slowing down the rate at which these ecosystems lose carbon by 0.71 Mg C ha−1 per growing season. Digital repeated imagery of the canopy revealed that compost‐amended grasslands experienced an earlier green‐up, resulting in an overall longer growing season by >60 days. Notably, we did not detect significantly higher amounts of soil carbon in compost‐amended soils. High variability in soil carbon demands greater sampling replication in future studies. A longer growing season and higher productivity are hypothesized to be a result of greater availability of macronutrients and micronutrients in the top layer of soil (specifically nitrogen, phosphorus, and zinc).

Funder

Governor's Office of Planning and Research

Lawrence Berkeley National Laboratory

Publisher

American Geophysical Union (AGU)

Subject

Paleontology,Atmospheric Science,Soil Science,Water Science and Technology,Ecology,Aquatic Science,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3