Velocity Measurements of Powdered Rock at Low Confining Pressures and Comparison to Lunar Shallow Seismic Velocity

Author:

Amos C. C.1ORCID,Prasad M.2ORCID,Cannon K. M.13ORCID,Dreyer C. B.1

Affiliation:

1. Space Resources Program Colorado School of Mines Golden CO USA

2. Department of Geophysics Colorado School of Mines Golden CO USA

3. Department of Geology and Geological Engineering Colorado School of Mines Golden CO USA

Abstract

AbstractSeismic methods will be useful for future lunar near‐surface characterization, and high‐fidelity elastic models will be required to aid interpretation of seismic observations. To develop an elastic lunar near‐surface model, we performed ultrasonic velocity measurements of lunar regolith simulant at low confining pressure and developed a rock physics model calibrated to these measurements. Grain contact models based on Hertz‐Mindlin theory produce accurate results at high confining pressure (i.e., several hundred meters or more burial depth) but historically fail to predict observed velocities in unconsolidated media at low pressure. Therefore, we heuristically modified existing models to fit our measured data over a range of porosities and confining pressures. To compare with Apollo 14 and 16 active seismic experiments, we used our new heuristic rock physics model to produce lunar subsurface velocity profiles. We performed ray tracing through our velocity profiles to calculate seismic traveltime, which results in good agreement with first arrivals interpreted from the Apollo experiments. Our model suggests a slightly higher velocity‐pressure dependence than inferred from in situ measurements, which may be due to porosity reduction in the lunar regolith from impact‐induced and natural vibrations.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3