A Statistical Study of the Vertical Scale Height of the Martian Ionosphere Using MAVEN Observations

Author:

Liu Wendong12ORCID,Liu Libo123ORCID,Chen Yiding134ORCID,Le Huijun123ORCID,Yang Yuyan12ORCID,Li Wenbo123ORCID,Ma Han12ORCID,Zhang Hui123ORCID

Affiliation:

1. Key Laboratory of Earth and Planetary Physics Institute of Geology and Geophysics Chinese Academy of Sciences Beijing China

2. College of Earth and Planetary Sciences University of Chinese Academy of Sciences Beijing China

3. Heilong Mohe National Observatory of Geophysics Institute of Geology and Geophysics Chinese Academy of Sciences Beijing China

4. Beijing National Observatory of Space Environment Institute of Geology and Geophysics Chinese Academy of Sciences Beijing China

Abstract

AbstractThe Vertical Scale Height (VSH) is a crucial parameter that describes the shape of the ionospheric electron density profile. Evidence suggests a complex relationship between VSH and the thermal structure and dynamics of the ionosphere. A statistical study was conducted on the VSH at low altitudes (175 km) and high altitudes (300 km) in the Martian ionosphere, using data from the MAVEN observations from 2014 to 2023. The results suggest that the influence of the crustal magnetic field on VSH175 is more pronounced than on VSH300. VSH175 shows a minor peak around −20° latitudes, which is more than 7% higher than the average value, and an increasing trend with latitude in the northern hemisphere. VSH300 is higher in the southern hemisphere than in the northern hemisphere, especially in summer, by approximately 42.1%. Regarding the local time variation of VSH, we observed an increasing trend from midnight to morning and a decreasing trend from dusk to midnight in almost all conditions. The local time variation of VSH also exhibits seasonal and latitudinal dependence. These variations have different levels of consistency with the gradient of the electron temperature (Te) and the collision frequency between charged particles and neutrals. Specifically, the correlation coefficient between VSH175 and the collision frequency between charged particles and neutrals reaches as high as 0.93 in the northern hemisphere winter and southern hemisphere summer. The correlation coefficient between VSH300 and the gradient of the Te reaches up to 0.72 in the southern hemisphere equinox.

Funder

Chinese Academy of Sciences

National Natural Science Foundation of China

Youth Innovation Promotion Association of the Chinese Academy of Sciences

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3