Affiliation:
1. Department of Geology and Geophysics Texas A&M University College Station TX USA
2. Department of Geosciences Baylor University Waco TX USA
3. Department of Geology and Geophysics Louisiana State University Baton Rouge LA USA
Abstract
AbstractBoulders are ubiquitous on rocky planets and provide valuable information about planetary processes. The abundance, size, and distribution of boulders offer insights into the primary processes that form them and the secondary processes that modify their position and size. However, the roles of varying environmental processes, including cryospheric processes, are poorly known. In this study, we analyze over 20 million boulders in the northern lowlands of Mars (50–70°N) to evaluate their distribution and identify environmental factors that might influence their clustering. We used spatial statistics to quantify the degree of boulder clustering across the northern plains. We found two latitudinal trends: overall decreasing clustering with increasing latitude (50–70°N) and a sub‐trend of increased clustering at higher latitudes (65–70°N). Our findings suggest that boulder distribution patterns are linked to the latitude‐dependent mantle (LDM) and subsurface ice. Boulders exhibit higher spatial clustering at higher latitudes, where the ice is thick and continuously present, and the LDM is more pristine. Lower clustering occurs at lower latitudes or regions where the ice loss is likely during interglacial periods, and the LDM degrades, exposing more boulders of varying sizes. We also discovered an anomalous region where boulder clustering is nearly random, located on the edge of the Alba Mons Patera. This area displays distinct geophysical characteristics compared to the rest of the lowlands. Although these characteristics do not indicate a specific process for the variation of boulder distribution in this study, the data suggest a coupling between cryospheric processes and boulder evolution, warranting further research.
Funder
National Aeronautics and Space Administration
Baylor University
Publisher
American Geophysical Union (AGU)