Day/Night Differences in Molecular Oxygen in the Martian Upper Atmosphere

Author:

Gupta S.1ORCID,Yelle R. V.2ORCID,Schneider N. M.1ORCID,Jain S. K.1ORCID,Braude A. S.3ORCID,Verdier L.4,Montmessin F.4ORCID,Nakagawa H.5ORCID,Mayyasi M.6ORCID,Deighan J.1ORCID,Curry S. M.1ORCID

Affiliation:

1. Laboratory for Atmospheric and Space Physics University of Colorado Boulder Boulder CO USA

2. Lunar and Planetary Laboratory Science University of Arizona Tucson AZ USA

3. Jet Propulsion Laboratory California Institute of Technology Pasadena CA USA

4. Laboratoire Atmosphères Milieux Observations Spatiales CNRS/UVSQ Université Paris‐Saclay/UPMC Guyancourt France

5. Graduate School of Science Tohoku University Sendai Japan

6. Center for Space Physics Boston University Boston MA USA

Abstract

AbstractWe use the extensive stellar occultation data set of the Imaging Ultraviolet Spectrograph aboard the Mars Atmosphere and Volatile EvolutioN spacecraft to determine the first quantification of vertical variation in O2 mole fraction separately for day and night in the ∼90–130 km altitude range. The upper atmospheric O2 variation is expected to be due to the interplay between diffusion and advection because of its long photochemical lifetime. It is therefore a useful tracer of the state of atmospheric mixing and circulation. The altitude‐averaged mixing ratio is measured to be 2.69(±0.03) × 10−3 for the nightside and 2.05(±0.03) × 10−3 for the dayside. The average O2 mole fraction for day and night are nearly identical below 105 km, consistent with the value of 1.61 × 10−3 derived from the Mars Curiosity Rover/Sample Analysis at Mars near‐surface measurements. At higher altitudes, dominated by molecular diffusive separation, the measured O2 mole fraction demonstrates a vertical gradient with a local time dependence. The nightside mole fraction is a factor of 1.37 ± 0.04 larger than the dayside value at ∼125 km. This nightside enhancement is explained in terms of the relative role of solar‐driven rapid horizontal winds at high altitudes and slower vertical diffusion, resulting in a nightside (dayside) downward (upward) diffusive flux. Using the 1‐D diffusion model, the measured profiles correspond to a vertical eddy diffusion coefficient K = 3.5(±1.5) × 106 cm2/s. The Mars Climate Database predicts comparable but lower day‐night differences in oxygen mole fraction due to an overestimated K = 7.0(±1.0) × 106 cm2/s, which affects atmospheric mixing as well as the rate of atmospheric escape to space.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3