On the Gravity Wave‐Seeded Ionospheric Irregularities in the Martian Ionosphere

Author:

Tian Rong12ORCID,Jiang Chunhua1ORCID,Sánchez‐Cano Beatriz2ORCID,Yin Wenjie1ORCID,Yang Guobin1ORCID,Liu Tongxin1ORCID,Hu Yaogai1ORCID

Affiliation:

1. Department of Space Physics School of Electronic Information Wuhan University Wuhan China

2. School of Physics and Astronomy University of Leicester Leicester UK

Abstract

AbstractFor the past few decades, it has been demonstrated that gravity waves (GWs) and neutral winds can drive ionospheric irregularities on Earth. Still, as far as we know, the formation of ionospheric irregularities on Mars due to GWs has not been well studied. In this study, we use data from the NASA's Mars Atmosphere and Volatile Evolution (MAVEN) mission to show evidence of an irregularity event in the Martian ionosphere, potentially seeded by the GWs break (GWB). Statistical findings indicate that the observed ratio of GWB‐related irregularity events varies from ∼0.25 to ∼0.47 each year, and the average ratio in 2015–2020 is ∼0.37. We perform a numerical simulation to provide further insight into the processes behind irregularity formation, which employs neutral wind shear as a source of perturbation in the context of the GWB. The simulations yield results fundamentally aligned with the observed characteristics of ionospheric irregularities in the 2018 event by considering the wind shear as the disturbance source. This study provides supplementary insights into the perturbation sources involved in shaping irregularities within the Martian ionosphere and presents valuable information about the coupling between the Martian ionosphere and the lower atmosphere.

Funder

China Scholarship Council

National Natural Science Foundation of China

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3