Affiliation:
1. Department of Computer Engineering Universidad de Alcalá Madrid Spain
2. Department of Physics and Mathematics Universidad de Alcalá Madrid Spain
Abstract
AbstractAbduallah et al. (2024b, https://doi.org/10.1029/2023sw003824) proposed a novel approach using a deep neural network model, which includes a graph neural network and a bidirectional LSTM layer, named SYMHnet, to forecast the SYM‐H index one and 2 hr in advance. Additionally, the network also provides an uncertainty quantification of the predictions. While the approach is innovative, there are some areas where the model's design and implementation may not align with best practices in uncertainty quantification and predictive modeling. We focus on discrepancies in the input and output of the model, which can limit the applicability in real‐world forecasting scenarios. This comment aims to clarify these issues, offering detailed insights into how such discrepancies could compromise the model's interpretability and reliability, thereby contributing to the advancement of predictive modeling in space weather research.
Funder
European Space Agency
Ministerio de Ciencia e Innovación
Publisher
American Geophysical Union (AGU)