Even‐Order Harmonic Distortion Observations During Multiple Geomagnetic Disturbances: Investigation From New Zealand

Author:

Crack Malcolm1ORCID,Rodger Craig J.1ORCID,Clilverd Mark A.2ORCID,Mac Manus Daniel H.1ORCID,Martin Ian3,Dalzell Michael3ORCID,Subritzky Soren P.4ORCID,Watson Neville R.4ORCID,Petersen Tanja5ORCID

Affiliation:

1. Department of Physics University of Otago Dunedin New Zealand

2. British Antarctic Survey (UKRI‐NERC) Cambridge UK

3. Transpower New Zealand Limited Wellington New Zealand

4. Department of Electrical and Computer Engineering University of Canterbury Christchurch New Zealand

5. GNS Science Lower Hutt New Zealand

Abstract

AbstractLarge geomagnetic storms are a space weather hazard to power transmission networks due to the effects of Geomagnetically Induced Currents (GICs). GIC can negatively impact power transmission systems through the generation of even‐order current and voltage harmonics due to half‐cycle transformer saturation. This study investigates a decade of even‐order voltage total harmonic distortion (hereon referred to as Even‐Order Total Harmonic Distortion (ETHD)) observations provided by Transpower New Zealand Ltd., the national system operator. We make use of ETHD measurements at 139 locations throughout New Zealand, monitored at 377 separate circuit breakers, focusing on 10 large geomagnetic disturbances during the period 2013–2023. Analysis identified 5 key substations, which appeared to act as sources of ETHD. The majority of these substations include single phase transformer banks, and evidence of significant GIC magnitudes. The ETHD from the source substations was found to propagate into the surrounding network, with the percentage distortion typically decaying away over distances of 150–200 km locally, that is, at a rate of −0.0043 %km−1. During the study period some significant changes occurred in the power network, that is, removal of the Halfway Bush (HWB) single phase bank transformer T4 in November 2017, and decommissioning of the New Plymouth substation in December 2019. Decommissioning of these two assets resulted in less ETHD occurring in the surrounding regions during subsequent geomagnetic storms. However, ETHD still increased at HWB with increasing levels of GIC, indicating that three phase transformer units were still susceptible to saturation, albeit with about 1/3 of the ETHD percentage exhibited by single phase transformers.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3