Time‐Lagged Effects of Ionospheric Response to Severe Geomagnetic Storms on GNSS Kinematic Precise Point Positioning

Author:

Yang Zhe1ORCID,Morton Y. T. Jade2ORCID

Affiliation:

1. College of Surveying and Geo‐Informatics Tongji University Shanghai China

2. Smead Aerospace Engineering Sciences Department University of Colorado Boulder CO USA

Abstract

AbstractThis paper investigates time‐lag effects of ionospheric response to two severe geomagnetic storms (Kp = 8) on the degradation of kinematic precise point positioning (PPP) solutions, utilizing over 5500 Global Navigation Satellite Systems (GNSS) stations distributed worldwide. Focusing on these two severe geomagnetic storms that occurred during solar cycle 24, the study employs an open‐source positioning software package, namely RTKLIB, to derive the PPP solutions. The findings reveal significant variations in time lags across different magnetic latitudes. These variations are driven by ionospheric responses to a southward interplanetary magnetic field and subsequent decreases in the SMY‐H index during the 2015 St. Patrick's Day Storm and the 2017 September 7–8 Storm. Specifically, at high latitudes, PPP degradation primarily manifests during the main phase of the storm, resulting in delays spanning from several minutes to 1–2 hr after the sudden onset of the storm. In contrast, mid‐ and low latitudes exhibit a wider range of delays extending up to tens of hours. Notably, rapid positioning degradation is observed predominantly at the magnetic local time noon and midnight sectors. The study discusses these time lag effects concerning the intensity of various ionospheric disturbances triggered by the interactions among the solar wind, magnetosphere, and ionosphere during geomagnetic storms. The insights obtained from this research have the potential to be integrated into physics‐based and machine‐learning models to enhance forecasting capabilities of space weather impacts.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3