Harnessing the Power of Graph Representation in Climate Forecasting: Predicting Global Monthly Mean Sea Surface Temperatures and Anomalies

Author:

Ning Ding1ORCID,Vetrova Varvara1,Bryan Karin R.2,Koh Yun Sing3ORCID

Affiliation:

1. School of Mathematics and Statistics University of Canterbury Christchurch New Zealand

2. School of Science University of Waikato Hamilton New Zealand

3. School of Computer Science University of Auckland Auckland New Zealand

Abstract

AbstractThe variability of sea surface temperatures (SSTs) is crucial in climate dynamics, influencing marine ecosystems and human activities. This study leverages graph neural networks (GNNs), specifically a GraphSAGE model, to forecast SSTs and their anomalies (SSTAs), focusing on the global scale structure of climatological data. We introduce an improved graph construction technique for SST teleconnection representation. Our results highlight the GraphSAGE model's capability in 1‐month‐ahead global SST and SSTA forecasting, with SST predictions spanning up to 2 years with a recursive approach. Notably, regions with persistent currents exhibited enhanced SSTA predictability, contrasting with equatorial and Antarctic areas. Our GNN outperformed both the persistence model and traditional methods. Additionally, we offer an SST and SSTA graph data set based on ERA5 and a graph generation tool. This GNN case study has shown how the GraphSAGE can be used in SST and SSTA forecasting, and will provide a foundation for further refinements such as adjusting graph construction, optimizing imbalanced regression techniques for extreme SSTAs, and integrating GNNs with other temporal pattern learning methods to improve long‐term predictions.

Publisher

American Geophysical Union (AGU)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Forecasting water resources from satellite image time series using a graph-based learning strategy;The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences;2024-06-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3