An Object‐Oriented Bayesian Gravity Inversion Scheme for Inferring Density Anomalies in Planetary Interiors

Author:

Izquierdo Kristel12ORCID,Lekić Vedran1ORCID,Montési Laurent G. J.1ORCID

Affiliation:

1. University of Maryland College Park MD USA

2. Now at Purdue University West Lafayette IN USA

Abstract

AbstractGravity inversions have contributed greatly to our knowledge of the interior of planetary bodies and the processes that shaped them. However, previous global gravity inversion methods neglect the inference of mantle density anomalies when using techniques to decrease the non‐uniqueness of the inversion. In this work, we present a novel global gravity inversion algorithm, named THeBOOGIe, suited to inferring global‐scale density anomalies within the crust and mantle of planetary bodies. The algorithm embraces the nonuniqueness inherent in gravity inversions by not prescribing at the outset a density interface or depth range of interest. Instead, the method combines a Bayesian approach with a flexible incorporation of prior geological or geophysical information to infer density anomalies at any depth. A validation test using synthetic lunar‐like gravity data shows that THeBOOGIe can constrain the lateral location of crustal density anomalies but tends to overestimate their thicknesses. Importantly, THeBOOGIe can detect deep mantle density anomalies and quantify the level of confidence in the inferred density models. Our results show that THeBOOGIe can provide complementary information to one‐dimensional seismic models of the interior of the terrestrial planets and the Moon by constraining density anomalies that are not spherically symmetric. Additionally, THeBOOGIe is specially suited to constraining the interior of partially differentiated bodies where these large‐scale density anomalies are more likely to exist. Finally, thanks to the flexible use of priors, THeBOOGIe is an essential tool to understand the interior of planetary bodies lacking additional constraints.

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences,Environmental Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3