Audio‐Magnetotelluric Survey for Groundwater Investigation in the Al‐Jaww Plain in Eastern Abu Dhabi, Al‐Ain, United Arab Emirates

Author:

Saibi H.12ORCID,Ali M. Y.3ORCID,Cherkose B. A.1ORCID,Alaran A.1,Ullah S.3,Tsuji T.2ORCID

Affiliation:

1. Department of Geosciences College of Science United Arab Emirates University Al‐Ain United Arab Emirates

2. School of Engineering The University of Tokyo Tokyo Japan

3. Khalifa University of Science and Technology Abu Dhabi United Arab Emirates

Abstract

AbstractThe United Arab Emirates (UAE), located in an arid climate zone with low rainfall, relies on shallow aquifers for freshwater. Understanding the depth and extent of such aquifers is crucial for meeting water supply needs. The UAE's hydrogeology is influenced by neighboring mountains in Oman. The Al‐Jaww Plain in southeast of Al‐Ain city is an essential groundwater source, characterized by a large, flat area of gravel and sand deposits from the Oman Mountains. This study aims to map groundwater aquifers in the Al‐Jaww Plain by integrating the audio‐magnetotelluric (AMT) method, seismic reflection profiling, and borehole data. AMT data were collected along an 11‐km ENE–WSW profile and a 2D resistivity model was generated. The resulting model delineates three distinct geo‐electrical zones from the surface to a depth of 5 km. First, a shallow layer with low resistivity (0–15 Ωm) represents the Quaternary and Pliocene aquifers, in addition to the Upper Cretaceous Simsima and Tertiary groundwater aquifer zone, extending to a depth of 1.5 km. Second, a moderately resistive layer (15–250 Ωm) is recorded beneath the first layer, corresponding to the Upper Cretaceous Aruma foreland basin sequence. Finally, a high‐resistivity region (>250 Ωm) at depths exceeding 3 km is attributed to the allochthonous Hawasina thrust sheet, which is associated with Late Cretaceous obduction of the Semail ophiolite. These findings have practical implications for managing groundwater resources in Al‐Ain.

Funder

United Arab Emirates University

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3