Comparison of Forecasting Biases Over New York State Mesonet: A Wet Summer Versus a Dry Summer

Author:

Min Lanxi1ORCID,Min Qilong2ORCID,Wang Chiming1

Affiliation:

1. School of Computer and Information Engineering Xiamen University of Technology Xiamen China

2. Department of Atmospheric and Environmental Sciences University at Albany Albany NY USA

Abstract

AbstractExtreme weather events are occurring with increasing frequent due to the climate change. This increasing frequency may introduce more uncertainty in weather forecasting model performance, particularly when considering the intricate relationship of the land surface and atmosphere coupling system. In this study, we utilize data from the sophisticated New York State Mesonet to evaluate the performance of a forecasting system based on WRF Version 4 model, drawing insights from both dry and wet summers. Additionally, the model's performance is assessed on two land surface types: forest and farmland, to provide a comprehensive evaluation of impact of land surface heterogeneity. The surface meteorology, fluxes, and cloud development are assessed. The coupling between surface and atmosphere is diagnosed using a mixing diagram which serves to represent surface thermodynamic properties. The results reveal a systematic increase in warm season dry and warm biases, especially for forested sites during a drought year. The model exhibits heightened sensitivity to drought conditions, resulting in a substantial underestimation of latent heat fluxes during such period. During days with boundary layer clouds, the mixing diagram shows a notably slower growth of moist static energy in the model compared to observation. It is possible that these biases partly attribute to the underestimation of cloud optical depth due to not enough energy for the cloud development.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3