Assessment of Pre‐ and Post‐Fire Fuel Availability for Wildfire Management Based on L‐Band Polarimetric SAR

Author:

An Karen1ORCID,Jones Cathleen E.1ORCID,Lou Yunling1ORCID

Affiliation:

1. Jet Propulsion Laboratory California Institute of Technology Pasadena CA USA

Abstract

AbstractMany communities coexist with wildfires that lead to loss of lives, property, and ecosystem services. Remote sensing tools can aid disaster response and post‐event assessment, offering fire agencies opportunities for additional surveillance with radar, an all‐weather instrument that can image day or night. The Station (2009) and Bobcat (2020) Fires are the two largest fires in Los Angeles County history, each burning over 100,000 acres. These areas are imaged with NASA's Uninhabited Aerial Vehicle Synthetic Aperture Radar L‐band instrument. We test whether polarimetric radar can detect fire scars, burn severity, and different fuel types through its sensitivity to different scattering mechanisms. Polarimetric SAR products are moved into geographic information system‐friendly formats, and in lieu of available field measurements are analyzed alongside agency data showing fire perimeters, burn progression outlines, and soil burn severity. We find that the HV polarization returns and the primary scattering mechanism, quantified through the Cloude‐Pottier decomposition, are the most sensitive parameters. Higher HV values pre‐fire correspond well to areas of moderate and high soil burn severity, and the pattern of fire progression follows higher HV to some extent. Using an HV difference threshold of 1.5 dB, the Bobcat burn scar is identified at 0.70 accuracy when compared with the published fire perimeter. Alpha 1 Angle can also demonstrate sensitivity to soil burn severity pre‐ and post‐fire, showing vegetation types with increased surface scattering post‐fire, which can be used to map burn scars and track recovery by vegetation type.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3