Evaluation of Different Bias Correction Methods for Dynamical Downscaled Future Projections of the California Current Upwelling System

Author:

Pozo Buil Mercedes12ORCID,Fiechter Jerome3ORCID,Jacox Michael G.124ORCID,Bograd Steven J.12ORCID,Alexander Michael A.4ORCID

Affiliation:

1. Institute of Marine Sciences University of California Santa Cruz Santa Cruz CA USA

2. NOAA Southwest Fisheries Science Center Monterey CA USA

3. Ocean Sciences University of California Santa Cruz Santa Cruz CA USA

4. NOAA Physical Sciences Laboratory Boulder CO USA

Abstract

AbstractBiases in global Earth System Models (ESMs) are an important source of errors when used to obtain boundary conditions for regional models. Here we examine historical and future conditions in the California Current System (CCS) using three different methods to force the regional model: (a) interpolation of ESM output to the regional grid with no bias correction; (b) a “seasonally‐varying” delta method that obtains a season‐dependent mean climate change signal from the ESM for a 30‐year future period; and (c) a “time‐varying” delta method that includes the interannual variability of the ESM over the 1980–2100 period. To compare these methods, we use a high‐resolution (0.1°) physical‐biogeochemical regional model to dynamically downscale an ESM projection under the RCP8.5 emission scenario. Using different downscaling methods, the sign of future changes agrees for most of the physical and ecosystem variables, but the spatial patterns and magnitudes of these changes differ, with the seasonal‐ and time‐varying delta simulations showing more similar changes. Not correcting the ESM forcing leads to amplification of biases in some ecosystem variables as well as misrepresentation of the California Undercurrent and CCS source waters. In the non‐bias corrected and time‐varying delta simulations, most of the ecosystem variables inherit trends and decadal variability from the ESM, while in the seasonally‐varying delta simulation the future variability reflects the observed historical variability (1980–2010). Our results demonstrate that bias correcting the forcing prior to downscaling improves historical simulations, and that the bias correction method may impact the spatial and temporal variability of the future projections.

Funder

Climate Program Office

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3