Experiments on Landquakes Generated by Free‐Falling Granular Masses: Implications for Rockfall Impact Dynamics

Author:

Li Tianhua1ORCID,Wang Yufeng12ORCID,Cheng Qiangong123ORCID,Lin Qiwen1ORCID,Shi Anwen1,Ming Jie1,Luo Xiao1

Affiliation:

1. Department of Geological Engineering Southwest Jiaotong University Chengdu China

2. Key Laboratory of High‐Speed Railway Engineering Ministry of Education Chengdu China

3. State‐Province Joint Engineering Laboratory of Spatial Information Technology of High‐Speed Rail Safety Chengdu China

Abstract

AbstractThe properties of rockfalls, such as the volume and geometry of the detached rock mass as well as the number and diameter of rock fragments, greatly affect their propagated behavior, and different strategies are required to mitigate rockfall hazards. Landquakes generated by rockfalls are regarded as good proxies for those properties. To explore the free‐fall impact dynamics of rockfalls, a series of free‐fall experiments on granular masses were designed and conducted with the characteristics of the generated landquakes versus initial variables being analyzed. The results show that the particle diameter is a dominant factor affecting landquakes, with the most significant effect on the mean frequency. The impact area is another key factor, with which both the maximum seismic amplitude and radiated seismic energy have strong positive correlations, while the mean frequency of landquakes shows a weak negative correlation. The maximum seismic amplitude appears to have a poor correlation with the numbers of layers of the free‐falling granular masses, and it was proven that the maximum seismic amplitude is determined by only the lower part of the granular masses. Quantitative relationships between the number of particles and seismic signal characteristics indicate that disintegration needs to be accounted for when landquakes are used to investigate the characteristics of a rockfall. Moreover, the frequency of landquakes decreases with a decrease in the vertical velocity and increase in the horizontal velocity during granular mass collapse.

Funder

National Natural Science Foundation of China

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3