Numerical Simulations of Metallic Ion Density Perturbations in Sporadic E Layers Caused by Gravity Waves

Author:

Qiu Lihui12ORCID,Yamazaki Yosuke2ORCID,Yu Tao1ORCID,Becker Erich3ORCID,Miyoshi Yasunobu4,Qi Yifan1,Siddiqui Tarique A.2ORCID,Stolle Claudia2ORCID,Feng Wuhu56ORCID,Plane John M. C.6ORCID,Liang Yu1,Liu Huixin4ORCID

Affiliation:

1. Institute of Geophysics & Geomatics China University of Geosciences Wuhan China

2. Leibniz Institute of Atmospheric Physics at the University of Rostock Kühlungsborn Germany

3. Northwest Research Associates Inc. Boulder CO USA

4. Department of Earth and Planetary Sciences Kyushu University Fukuoka Japan

5. National Centre for Atmospheric Science University of Leeds Leeds UK

6. School of Chemistry University of Leeds Leeds UK

Abstract

AbstractTidal signatures in sporadic E (Es) layer have been confirmed by observations and simulations. However, the effect of gravity waves (GWs) on the Es layer formation process has not yet been fully understood. In this paper, the modulation of Es layers by GWs is examined through numerical simulations, in which a physics‐based model of Es layer is forced by neutral winds from the High Altitude Mechanistic General Circulation Model that can resolve GWs with horizontal wavelengths longer than 156 km (λh > 156 km). Comparison of the simulation results with and without the GWs (1,350 km > λh > 156 km) forcing reveals that the inclusion of GWs leads to short‐period (1.2–3 hr) density perturbations in Es layers, which are also seen in ground‐based ionosonde observations. At a given time, the metallic ion density at altitudes between 120 and 150 km can either increase (by up to ∼+600%) or reduce (by up to −90%) in response to GW forcing. The relative density perturbations are smaller (by up to 60%) between 90 and 120 km altitude. It is also found that the GW effect on the metallic ion density relates to the longitude, which is mostly explained by the geographical distribution of GWs activity in the mesosphere and lower thermosphere region. The longitudinal variation of the background geomagnetic field plays only a secondary role.

Funder

National Natural Science Foundation of China

China Scholarship Council

European Office of Aerospace Research and Development

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences,Environmental Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3