The Influence of ENSO on the Long‐Term Water Storage Anomalies in the Middle‐Lower Reaches of the Yangtze River Basin: Evaluation and Analysis

Author:

Li Xiaolong1ORCID,Jin Taoyong12ORCID,Liu Bingshi1ORCID,Chao Nengfang3ORCID,Li Fupeng4,Cai Zuansi5ORCID

Affiliation:

1. School of Geodesy and Geomatics Hubei Luojia Laboratory Wuhan University Wuhan China

2. Key Laboratory of Geospace Environment and Geodesy Ministry of Education Wuhan China

3. College of Marine Science and Technology China University of Geosciences Wuhan China

4. Institute of Geodesy and Geoinformation University of Bonn Bonn Germany

5. School of Computing, Engineering and the Built Environment Edinburgh Napier University Edinburgh UK

Abstract

AbstractRecent extreme events in the Middle‐Lower reaches of the Yangtze River basin (MLYRB) are proven to be possibly linked to the El Niño‐Southern Oscillation (ENSO) events as indicated by terrestrial water storage anomaly (TWSA). But the relatively short observation time of Gravity Recovery and Climate Experiment series missions (2002–2017; 2018–present) affects the robustness of the evaluation of TWSA. Here, the applicability of four long‐term TWSA data sets (since 1979) in the MLYRB is evaluated first using an evaluation framework including two completely independent tests. After selecting the optimal one, we investigate the effects of ENSO on TWSA in the MLYRB at the basin, subbasin, and grid cell scales, respectively. Results show that ENSO, especially the Eastern Pacific type ENSO has had a significant impact on TWSA variations in the MLYRB and its two subbasins (the Dongting Lake basin and the Poyang Lake basin) since 1979 with correlation coefficients at 0.56–0.65 and time lags at 5–6 months. However, TWSAs in the other two subbasins (the Hanjiang River basin and the Mainstream River basin) have almost no correlation with ENSO. Further analysis reveals that compared with human activity that has a limited impact on TWSA, precipitation is one of the key inducements for regional water storage changes in these two subbasins, and the no correlation between ENSO and TWSA is mainly caused by the weak link between ENSO and precipitation.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hubei Province

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3