Optimization of a Tsunami Gauge Configuration for Pseudo‐Super‐Resolution of Wave Height Distribution

Author:

Fujita Saneiki1ORCID,Nomura Reika2ORCID,Moriguchi Shuji2,Otake Yu1ORCID,Koshimura Shunichi2ORCID,LeVeque Randall J.23ORCID,Terada Kenjiro2ORCID

Affiliation:

1. Department of Civil and Environmental Engineering Tohoku University Sendai Japan

2. International Research Institute of Disaster Science, Tohoku University Sendai Japan

3. Department of Applied Mathematics University of Washington Seattle WA USA

Abstract

AbstractIn this study, we present an optimization method for determining a cost‐effective sparse configuration for tsunami gauges to realize the reconstruction of high‐resolution wave height distribution throughout the target region based on the concept of super‐resolution. This optimization method consists of three procedures. First, we generate time series data of tsunami wave heights at synthetic gauges by conducting numerical simulations of various earthquake and tsunami scenarios at the target site. Next, we apply proper orthogonal decomposition to the synthetic tsunami data to extract the spatial features of the wave height distribution. Finally, according to these spatial features, an optimization process is performed to determine a sparse configuration of synthetic gauges. In the optimization, the optimal gauges are sequentially selected from the set of synthetic gauges to reconstruct the wave height distribution with the highest accuracy. Targeting hypothetical Nankai Trough earthquakes and tsunamis, we determine the optimal configuration near Shikoku and demonstrate the wave height reconstruction capability of the approach by comparing the performance of networks with optimally and randomly placed gauges. The results indicate that coastal gauges contribute more to improving the reconstruction accuracy and that a configuration with 21 optimal gauges has satisfactory performance. In addition, we assess the performance of the existing NOWPHAS network installed in the Shikoku region and find that the reconstruction performance of the existing network is equivalent to that of the optimal gauge network.

Funder

Japan Science and Technology Agency

Japan Society for the Promotion of Science

Tohoku University

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3