Analysis of ICESat‐2 Data Acquisition Algorithm Parameter Enhancements to Improve Worldwide Bathymetric Coverage

Author:

Dietrich James T.1ORCID,Rackley Reese Ann2,Gibbons Aimée2ORCID,Magruder Lori A.13ORCID,Parrish Christopher E.4ORCID

Affiliation:

1. 3D Geospatial Laboratory Center for Space Research Cockrell School of Engineering University of Texas at Austin Austin TX USA

2. KBR Greenbelt MD USA

3. Department of Aerospace Engineering and Engineering Mechanics Cockrell School of Engineering University of Texas at Austin Austin TX USA

4. School of Civil and Construction Engineering Oregon State University Corvallis OR USA

Abstract

AbstractA major advance in global bathymetric observation occurred in 2018 with the launch of NASA’s ICESat‐2 satellite, carrying a green‐wavelength, photon‐counting lidar, the Advanced Topographic Laser Altimeter System (ATLAS). Although bathymetric measurement was not initially a design goal for the mission, pre‐ and post‐launch studies revealed ATLAS’s notable bathymetric mapping capability. ICESat‐2 bathymetry has been used to support a wide range of coastal and nearshore science objectives. However, analysis of ICESat‐2 bathymetry in numerous locations around the world revealed instances of missing or clipped bathymetry in areas where bathymetric measurement should be feasible. These missing data were due to the ATLAS receiver algorithms not being optimized for bathymetry capture. To address this, two updates have been made to ICESat‐2’s receiver algorithm parameters with the goal of increasing the area for which ICESat‐2 can provide bathymetry. This paper details the parameter changes and presents the results of a two‐phased study designed to investigate ICESat‐2’s bathymetry enhancements at both local and global scales. The results of both phases confirm that the new parameters achieved the intended goal of increasing the amount of bathymetry provided by ICESat‐2. The site‐specific phase demonstrates the ability to fill critical bathymetric data gaps in open ocean and coastal settings. The global analysis shows that the area of potential bathymetry approximately doubled, with 6.1 million km2 of new area in which bathymetric measurements may be feasible. These enhancements are anticipated to facilitate a range of science objectives and close the gap between ICESat‐2 bathymetry and offshore sonar data.

Funder

National Aeronautics and Space Administration

Publisher

American Geophysical Union (AGU)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3