Remote Sensing of Ocean Dynamics Parameters by Wide‐Beam High‐Frequency Hybrid Sky‐Surface Wave Radar: Localization of Sea Surface Scattering Points and Decontamination of Semi‐Physical Ionosphere Phase

Author:

Feng Mengyan12ORCID,Fang Hanxian1,Wu Xiongbin23ORCID,Ai Weihua1,Yue Xianchang23ORCID,Zhang Lan23

Affiliation:

1. College of Meteorology and Oceanography National University of Defense Technology Changsha China

2. School of Electronic Information Wuhan University Wuhan China

3. Collaborative Innovation Center of Geospatial Technology Wuhan China

Abstract

AbstractThis study addresses the issue of locating the scattering points on the sea surface and rectifying the interference caused by the ionosphere phase in the remote sensing of ocean dynamics parameters. Wide‐beam high‐frequency hybrid sky‐surface wave radar (WB‐HFSSWR) was used for this purpose. In order to mitigate the impact of ionosphere phase contamination on the electron density variation along the sky‐wave path of a radio wave, we present two algorithms: the WB‐HFSSWR Single‐Station sea surface scattering point localization algorithm (WB‐SPLA) and the semi‐physical ionosphere phase decontamination algorithm (SP‐IPDA). Compared with the currently employed ionosphere phase decontamination algorithm, the SP‐IPDA algorithm exhibited enhanced physical characteristics. To evaluate the efficacy of the proposed algorithms, we calculate the root‐mean‐square errors (RMSEs) of the elliptical current velocity (vE‐IRI and vE‐GST) of the WB‐HFSSWR, based on the SP‐IPDA and generalized S‐transform algorithm (GST). The results demonstrated that the RMSEs of vE‐IRI and vE‐GST were comparable to the precision of the bistatic surface‐wave radar elliptical current velocity. The data volume of vE‐IRI was 20.5% larger than that of vE‐GST, and vE‐IRI was more precise than vE‐GST, with RMSEs of 11.98 and 12.63 cm/s, respectively. Furthermore, on the common sea surface scattering points, the precision of vE‐IRI was approximately 18.4% higher than that of vE‐GST.

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences,Environmental Science (miscellaneous)

Reference59 articles.

1. Influence of the ionosphere on radio astronomical signals according to GPS sounding and ionospheric modeling;Afraimovich E.;Proceedings of SPIE,2008

2. Tests of remote skywave measurement of ocean surface conditions

3. Multiparabolic ionospheric model for SSL application

4. High-resolution mapping of oceanic wind fields with skywave radar

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3