Spatial and Temporal Resolution Needs for Volcano Topographic Change Data Sets Based on Past Eruptions (1980–2019)

Author:

Eiden E.1ORCID,Pritchard M. E.1ORCID,Lundgren P. R.2ORCID

Affiliation:

1. Cornell University Ithaca NY USA

2. Jet Propulsion Laboratory California Institute of Technology Pasadena CA USA

Abstract

AbstractUp‐to‐date topography data sets are essential for forecasting volcanic hazards and monitoring deformation. Digital elevation models are used to quantify eruption rates, used in flow modeling programs, and are necessary to accurately process interferometric synthetic aperture radar data for surface deformation. We can track topographic change at volcanoes through fieldwork, airborne instruments, and satellite data, with the last providing the greatest potential for global coverage. Despite this global coverage, we do not know the characteristics of topographic change at volcanoes over a given time interval. We define the specific acquisition needs for topography data using topographic change detected from recent eruptions. We review existing literature and compile a data set of eruptive products (121 lava flows, 99 domes and 163 pyroclastic density currents (PDCs)) from eruptions between 1980 and 2019. We find that different sensing capabilities are required for different use cases. A vertical accuracy of 1 m would detect 92% of all eruptive products including 100% of lava domes and lava flows, but only 78% of PDCs. A horizontal resolution of 13 × 13 m pixels is the minimum necessary to detect 90% of all eruptive products. Explosive eruptions (with PDC products) typically lasted less than 1 day and would need a temporal resolution of 1 day while a longer repeat interval is acceptable at effusive eruptions (lava domes and flows), which could last weeks to years. We find a lack of consistent data acquisition, with 45% of the 383 eruptive products reported not having published spatial dimensions.

Funder

Jet Propulsion Laboratory

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences,Environmental Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3