Affiliation:
1. Shandong Key Laboratory of Optical Astronomy and Solar—Terrestrial Environment School of Space Science and Physics Institute of Space Sciences Shandong University Weihai PR China
2. CAS Center for Excellence in Comparative Planetology Chinese Academy of Sciences Hefei PR China
Abstract
AbstractA 532‐nm‐excited lunar Raman spectrometer (LRS) has been selected as a scientific payload of the Chang'e‐7 mission, exploring mineralogy assemblages in the lunar south polar region. However, the quantification of dark‐colored silicate minerals via Raman spectroscopy is an urgent requirement for upcoming Raman applications in future lunar and planetary explorations. Therefore, we conducted detailed laboratory studies on the Raman quantification of lunar silicate minerals using ternary mixtures of feldspar, olivine, and augite. Quantitative models were established employing the observed linear relationship between Raman integrated intensities and mineral proportions. The significant correlation coefficients (>0.94) and small RMSE (≤4.20 wt.%) confirmed the performance of these models. A series of methods (multipoint sampling, multispectral averaging, peak area extraction, and spectral parameter ratios) were jointly used to ensure that the models were not significantly affected by crystal orientation, chemical inhomogeneity, and instruments. Factors (σ2/σ1) describing the relative Raman scattering cross sections were introduced to calibrate the Raman counts. Our results indicated that the relative Raman scattering efficiency of feldspar, olivine, and augite is 1.4:2.4:1, which can be used to improve the quantitative accuracy of the point‐counting method if polymineralic mixing spectra are dominant. The models were validated across different samples using laboratory mixtures and lunar soil (CE5C0600). The lithology of the Chang'e‐5 soils is basaltic/gabbroic according to the quantitative mineralogy returned from our models that is consistent with the results from traditional methods. This research will be of particular significance for accurately determining the mineral abundances for Chang'e‐7 and other planetary missions. As such, crucial information can be inferred to understand the geological evolution of the exploration regions.
Funder
National Natural Science Foundation of China
Chinese Academy of Sciences Key Project
China National Space Administration
Natural Science Foundation of Shandong Province
China Postdoctoral Science Foundation
National Key Research and Development Program of China
Publisher
American Geophysical Union (AGU)
Subject
General Earth and Planetary Sciences,Environmental Science (miscellaneous)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献