Affiliation:
1. Viginia Institute of Marine Science, William & Mary Gloucester Point VA USA
2. Department of Marine and Coastal Environmental Science Texas A&M University at Galveston Texas TX USA
3. Department of Coastal Studies East Carolina University Wanchese NC USA
Abstract
AbstractA high‐resolution wave model is crucial for accurate modeling of sediment and organic material transports, but its computational costs hinder direct coupling to an ecosystem model. We developed a machine learning model using long short‐term memory to simulate large‐scale, high‐resolution waves. Trained with numerical wave model (NWM) outputs and wind data from nine locations, our model successfully replicates NWM results for daily mean significant wave height and period in Chesapeake Bay with identical spatial resolution. Compared to the NWM, the data‐driven model has root‐mean‐square errors below 6 cm for daily mean significant wave height and 1 s for the wave period in the bay. It demonstrates excellent model skills and can accurately forecast daily mean significant wave height and period at NOAA wave stations comparable to NWMs. Using minimal wind data and having a short runtime, our data‐driven model shows promise as an alternative for wave forecasting and coupling with sediment and ecological models.
Publisher
American Geophysical Union (AGU)