Formation and Dynamics of a Coherent Coastal Freshwater Influenced System

Author:

Barton Benjamin I.1ORCID,De Dominicis Michela1ORCID,O’Hara Murray Rory2,Wolf Judith1ORCID,Gallego Alejandro2ORCID

Affiliation:

1. National Oceanography Centre Liverpool UK

2. Marine Directorate Scottish Government Aberdeen UK

Abstract

AbstractOn the Northwest European Shelf rivers provide freshwater to the coastal seas. This coastal freshwater can be misrepresented in ocean models without effective coastal resolution. This leaves an unanswered question; is freshwater retained around Scotland and what affects its variability? Here, we deploy and run an unstructured model with enhanced coastal resolution to simulate the Northwest European Shelf from 1993 to 2019, the Scottish Shelf Water‐Reanalysis Service (SSW‐RS) long‐time run. The unstructured nature of the model grid means it more accurately captures a “bubble” of Coastal Water than a 7 km structured grid model (the Atlantic Margin Model 7 km). Surface salinity in the SSW‐RS shows salinity fronts within 80 km of the coast around west and north Scotland that disintegrates east of Orkney. There are periods characterized by high coastal salinity when freshwater is more actively advected away from the coast. Empirical orthogonal function statistical analysis shows the first two modes in surface salinity account for 66% of the variance. The first mode correlates with North Atlantic Oscillation and the salinity driven velocity variability which change the salinity through advection and diffusion. The second mode correlates with Ekman transport variability where the north of Scotland acts as a wedge causing bipolar dynamics either side. Freshwater is trapped in the west, while saline water from the north reduces the freshwater pathway to the North Sea. This is important for salinity distribution, stratification in the North Sea, marine habitats and frontal transport.

Funder

Natural Environment Research Council

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3