Thermodynamics Drive Post‐2016 Changes in the Antarctic Sea Ice Seasonal Cycle

Author:

Himmich Kenza1ORCID,Vancoppenolle Martin1ORCID,Stammerjohn Sharon2ORCID,Bocquet Marion34ORCID,Madec Gurvan15,Sallée Jean‐Baptiste1,Fleury Sara3

Affiliation:

1. Laboratoire d’Océanographie et du Climat CNRS/IRD/MNHN Sorbonne Université Paris France

2. Institute of Arctic and Alpine Research University of Colorado Boulder CO USA

3. LEGOS CNES/CNRS/IRD/UPS Université de Toulouse Toulouse France

4. Collecte Localisation Satellites (CLS) Toulouse France

5. Inria CNRS Grenoble INP LJK Université Grenoble Alpes Grenoble France

Abstract

AbstractAntarctic sea ice extent has been persistently low since late 2016, possibly owing to changes in atmospheric and oceanic conditions. However, the relative contributions of the ocean, the atmosphere and the underlying mechanisms by which they have affected sea ice remain uncertain. To investigate possible causes for this sea‐ice decrease, we establish a seasonal timeline of sea ice changes following 2016, using remote sensing observations. Anomalies in the timing of sea ice retreat and advance are examined along with their spatial and interannual relations with various indicators of seasonal sea ice and oceanic changes. They include anomalies in winter ice thickness, spring ice removal rate due to ice melt and transport, and summer sea surface temperature. We find that the ice season has shortened at an unprecedented rate and magnitude, due to earlier retreat and later advance. We attribute this shortening to a winter ice thinning, in line with ice‐albedo feedback processes, with ice transport playing a smaller role. Reduced ice thickness has accelerated spring ice area removal as thinner sea ice requires less time to melt. The consequent earlier sea ice retreat has in turn increased ocean solar heat uptake in summer, ultimately delaying sea ice advance. We speculate that the observed winter sea ice thinning is consistent with previous evidence of subsurface warming of the Southern Ocean.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3