Deep Learning Improves GFS Sea Surface Wind Field Forecast Accuracy in the Northwest Pacific Ocean

Author:

Fu Shu1,Huang Wenyu1ORCID,Luo Jingjia2ORCID,Liu Dongqing3,Sun Danyi1ORCID,Fu Haohuan1,Luo Yong1ORCID,Wang Bin1ORCID

Affiliation:

1. Ministry of Education Key Laboratory for Earth System Modeling Department of Earth System Science (DESS) Tsinghua University Beijing China

2. Institute for Climate and Application Research (ICAR)/CIC‐FEMD/KLME/ILCEC Nanjing University of Information Science and Technology Nanjing China

3. Meteorological Observatory Nanjing Meteorological Bureau Nanjing China

Abstract

AbstractSea surface winds influence shipping, fisheries, and coastal projects. However, the current sea surface wind forecast exhibits noticeable biases. This study introduces a deep learning (DL)‐based bias correction model, WindNet, to improve the Global Forecast System (GFS) sea surface wind field forecast in the Northwest Pacific Ocean (NWPO). WindNet reduces the Root Mean Squared Errors (RMSEs) of wind speed at lead times of 24, 48, and 72 hr from 1.41–1.95 to 1.11–1.55 m s−1, achieving percentage reductions of 20.51%–21.28%. Simultaneously, the RMSEs of wind direction are reduced from 29.67–41.45° to 25.38–36.81°, demonstrating percentage reductions of 11.19%–14.46%. During typhoon passages, the RMSEs of wind speed and direction at three forecast lead times after using WindNet are reduced from 1.57–2.42 to 1.24–1.95 m s−1 and from 30.31–42.35° to 25.88–37.64°, demonstrating percentage reductions of 19.42%–21.02% and 11.12%–14.62%. By integrating a Squeeze‐and‐Excitation Network into WindNet, we find that utilizing information from the circulation field, apart from the zonal and meridional wind components at 10 m height, is crucial for the correction of the sea surface wind speed. WindNet can effectively capture the non‐linear relationship between other low‐level‐circulation‐related variables and sea surface wind speed. Therefore, WindNet remarkably enhances sea surface wind field forecast accuracy in NWPO.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3