Leveraging RALI‐THINICE Observations to Assess How the ICOLMDZ Model Simulates Clouds Embedded in Arctic Cyclones

Author:

Raillard Lea1ORCID,Vignon Étienne1ORCID,Rivière Gwendal1ORCID,Madeleine Jean‐Baptiste1,Meurdesoif Yann2,Delanoë Julien3,Caubel Arnaud2,Jourdan Olivier4ORCID,Baudoux Antoine4ORCID,Fromang Sébastien2ORCID,Conesa Philippe2

Affiliation:

1. Laboratoire de Météorologie Dynamique‐IPSL Sorbonne Université/CNRS/Ecole Normale Supérieure‐PSL Université/Ecole Polytechnique‐Institut Polytechnique de Paris Paris France

2. Laboratoire des Sciences du Climat et de l’Environnement, LSCE/IPSL, CEA‐CNRS‐UVSQ, Université Paris‐Saclay Gif‐sur‐Yvette France

3. Laboratoire Atmosphère, Milieux et Observations Spatiales, LATMOS/IPSL, UVSQ Université Paris‐Saclay, Sorbonne Université, CNRS Guyancourt France

4. Laboratoire de Météorologie Physique Université Clermont Auvergne/OPGC/CNRS Clermont‐Ferrand France

Abstract

AbstractDespite their essential role in the high‐latitude climate, the representation of mixed‐phase clouds is still a challenge for Global Climate Models (GCMs)'s cloud schemes. In this study we propose a methodology for robustly assessing Arctic mixed‐phase cloud properties in a climate model using airborne measurements. We leverage data collected during the RALI‐THINICE airborne campaign that took place near Svalbard in August 2022 to evaluate the simulation of mid‐level clouds associated with Arctic cyclones. Simulations are carried out with the new limited‐area configuration of the ICOLMDZ model which combines the recent icosahedral dynamical core DYNAMICO and the physics of LMDZ, the atmospheric component of the IPSL‐CM Earth System Model. Airborne radar and microphysical probes measurements are then used to evaluate the simulated clouds. A comparison method has been set‐up to guarantee as much as possible the spatiotemporal co‐location between observed and simulated cloud fields. We mostly focus on the representation of ice and liquid in‐cloud contents and on their vertical distribution. Results show that the model overestimates the amount of cloud condensates and exhibits a poor cloud phase spatial distribution, with too much liquid water far from cloud top and too much ice close to it. The downward gradual increase in snowfall flux is also not captured by the model. This in‐depth model evaluation thereby pinpoints priorities for further improvements in the ICOLMDZ cloud scheme.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3