A Machine Learning Method to Retrieve Global Rainfall and Snowfall Rates From the Passive Microwave Observations of FY‐3E

Author:

Zhao Runze12,Wang Kaicun3ORCID,Xu Xiangde2ORCID

Affiliation:

1. Key Laboratory of Radiometric Calibration and Validation for Environmental Satellites National Satellite Meteorological Center (National Center for Space Weather) China Meteorological Administration Beijing China

2. State Key Laboratory of Severe Weather Chinese Academy of Meteorological Sciences Beijing China

3. College of Urban and Environmental Sciences Institute of Carbon Neutrality Sino‐French Institute for Earth System Science Peking University Beijing China

Abstract

AbstractPassive microwave radiometers onboard satellites rely on the received upwelling radiation to retrieve precipitation, which is a mixed signal from the surface, atmosphere and precipitation hydrometeors. Liquid precipitation droplets increase the upwelling radiation from the surface at lower frequencies, while ice particles cause a decrease in upwelling radiation at higher frequencies. The task of the retrieval algorithm is to identify the precipitation phase and to isolate the signal of precipitation from that of the surface. This study develops a machine learning method to retrieve rainfall and snowfall rates based on observations from the Microwave Hydrometer Sounder and Microwave Temperature Sounder onboard FY‐3E. Self‐organized mapping (SOM) is selected to classify the precipitation and underlying surface types, and an artificial neural network (ANN) is subsequently used to relate the brightness temperature to the precipitation rate for the clusters derived from the SOM. The half‐hour product of the Integrated Multi‐Satellite Retrieval for Global Precipitation Measurement (IMERG) is used to train the ANN. To address the issue that number of heavy precipitation samples are not enough for training, the simulation of radiative transfer for TOVS is used as a supplement to heavy rain samples. The SOM‐ANN algorithm outperforms the IMERG and Goddard profiling algorithm (GPROF) retrieval products in both rainfall and snowfall retrieval. Compared with the hourly observations at ∼4,400 stations during a 2‐year period, the root mean square errors of SOM‐ANN proposed here are 1.06 and 0.34 mm/hr for the rainfall and snowfall rates, which are better than those of IMERG (1.23 and 0.42 mm/hr) and GPROF (1.22 and 0.44 mm/hr).

Funder

National Science and Technology Infrastructure Program

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3