Role of Clouds in the Urban Heat Island and Extreme Heat: Houston‐Galveston Metropolitan Area Case

Author:

Mejia John F.1ORCID,Henao Juan Jose1ORCID,Eslami Ebrahim2ORCID

Affiliation:

1. Division of Atmospheric Sciences Desert Research Institute Reno NV USA

2. Houston Advance Research Center The Woodlands TX USA

Abstract

AbstractThis study examines the influence of shallow cumulus clouds on the excessive summertime heat in the Houston‐Galveston metropolitan area, a coastal urban area in the warm Southeast United States. Specifically, it aims to improve our understanding of how both the clouds and the relatively cool, moist afternoon sea breeze impact the Urban Heat Island (UHI) and Heat Index (HI). During the warm season, the afternoon sea breeze phenomenon in this coastal city acts as a natural air conditioner for city residents, facilitating the dispersion of moisture, heat, and pollutants. To investigate the relationship among urbanization, clouds, and land‐sea interactions, we conducted cloud‐ and urban‐resolving simulations at a 900 m grid resolution and perform simulation scenarios aiming to isolate urbanization, clouds and land‐sea circulations. Results show that urbanization correlates with the presence of shallow cumulus clouds, higher cloud bases, and increased cloud duration over the Galveston‐Houston region compared to rural areas. These urban clouds benefit from the enhanced moist static energy that is favored by intensifying vertical mixing and moisture flux convergence. Urbanization raises the mean HI while mitigating its afternoon HI high. We found that the urban circulation dome overwhelms the sensitivity of the sea breeze to the urbanization. Instead, the influence of urbanization on cloud enhancement emerges as a crucial pathway responsible for reducing the high afternoon HI values. Moreover, uncertainties in SSTs are closely linked to the sensitivities of land‐sea circulations, which in turn modulate UHI and HI.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3