Resolving Organic Aerosol Components Contributing to the Oxidative Potential of PM2.5 in the North China Plain

Author:

Liu Fobang12ORCID,Yang Xu1,Xu Weiqi3,Verma Vishal4,Wang Zhao15,Chen Chun36,He Yao37,Yang Liu3,Yang Yang8ORCID,Sun Yele3ORCID,He Chi1

Affiliation:

1. Department of Environmental Science and Engineering, School of Energy and Power Engineering Xi'an Jiaotong University Xi'an China

2. Guangdong‐Hongkong‐Macau Joint Laboratory of Collaborative Innovation for Environmental Quality Guangzhou China

3. State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry Institute of Atmospheric Physics, Chinese Academy of Sciences Beijing China

4. Department of Civil and Environmental Engineering University of Illinois at Urbana Champaign Urbana IL USA

5. Shaanxi Provincial Land Engineering Construction Group Co., Ltd. Xi'an China

6. Now at Chinese Research Academy of Environmental Sciences Beijing China

7. Now at Institute for Environmental and Climate Research, Jinan University Guangzhou China

8. School of Marine Science and Engineering Nanjing Normal University Nanjing China

Abstract

AbstractThe oxidative potential (OP) of ambient particulate matter (PM) is a common metric for estimating PM toxicity and linking PM exposure to adverse health effects. Organic aerosol (OA), a dominant fraction of ambient PM worldwide, may significantly contribute to PM toxicity. Here, we investigated the source‐based OA components contributing to the OP of PM in the urban (Beijing, summer and winter) and rural (Gucheng, winter) environments of the North China Plain (NCP). Various OA components as identified by the aerosol mass spectrometer/aerosol chemical speciation monitor (AMS/ACSM), transition metals, and black carbon were compared with the OP of PM measured by dithiothreitol assays. The results consistently demonstrate the importance of OA as a contributor to PM's OP in both urban and rural NCP environments. Higher intrinsic OP was observed in winter Beijing than in summer, possibly due to OA being predominantly from anthropogenic sources in winter. Furthermore, different OA components were found to drive the response of OP in the two environments. More‐oxidized oxygenated OA (MO‐OOA), cooking OA, and oxidized primary OA (during winter) are the OA contributors to OP in the urban environment, with a dominant contribution from MO‐OOA. In contrast, biomass burning OA (BBOA) and OOA play a major role in the OP in the rural environment, with BBOA making the largest contribution. Overall, this work highlights the significance of OA in determining PM's OP and calls for more work to reveal the sources and characteristics of OA components contributing to OP across different regions.

Funder

National Natural Science Foundation of China

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3