Affiliation:
1. School of Oceanography Shanghai Jiao Tong University Shanghai China
2. Key Laboratory of Polar Science Polar Research Institute of China Ministry of Nature Resources Beijing China
Abstract
AbstractThe Spring Predictability Barrier (SPB) phenomenon is characterized by the reduced accuracy of El Niño/Southern Oscillation (ENSO) forecasts during the spring, which substantially limits our ability to predict ENSO events. By investigating the nonlinear dynamic characteristics of ENSO systems simulated by a box model, we found that the strong surface heating process in spring may contribute to the SPB by regulating the different coupling processes between the ocean and atmosphere. Specifically, the intensified springtime surface heating increases the Sea Surface Temperature (SST), further amplifying the thermal damping effect of SST anomalies and reducing the dynamic connection between zonal SST gradient and upwelling process, and finally increasing the chaotic degree of ENSO systems simulated by the box model. The enhanced chaotic degree of ENSO systems leads to a more rapid growth of initial errors in the forecast model in spring, potentially leading to the SPB phenomenon.
Funder
National Natural Science Foundation of China
Publisher
American Geophysical Union (AGU)