Kinetic and Thermodynamic Transition Pathways of Silica by Machine Learning: Implication for Meteorite Impacts

Author:

Cao Xuyan1ORCID,Han Songsong1,Li Junwei1,Zhu Sheng‐Cai2ORCID,Hu Qingyang1

Affiliation:

1. Center for High Pressure Science and Technology Advanced Research Beijing China

2. School of Materials Shenzhen Campus of Sun Yat‐sen University Shenzhen China

Abstract

AbstractRocks falling to Earth from space may generate pressure and temperature approaching Earth's deep mantle, but such meteorite impact only persists for a very short period. Under these extreme conditions, kinetical factors largely control mineral phase transitions, in which the resultant phase may deviate from those at thermal equilibrium. Here, we focus on the phase transitions of silica during meteorite impact, and have elucidated multiple pathways from low‐coordinated silica to seifertite, the densest known silica found in meteorite samples. Utilizing a high‐dimensional neuro‐network potential specifically designed for silica, we exhaustively map the potential energy landscape through stochastic surface walking and uncover low‐barrier transition pathways toward seifertite at pressures far away from thermal equilibrium. These kinetic‐driven transitions are then characterized by first‐principles simulations, revealing narrow transition windows of pressure, with seifertite becoming more kinetically favored over stishovite at pressures in the vicinity of 10 and 25 GPa. Our results suggest that meteorite impacts should have reached such target pressures to overcome the thermodynamic limit of forming seifertite. The presence of seifertite may provide key information in constraining the relevant dynamic compression conditions.

Funder

Ministry of Science and Technology of the People's Republic of China

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3