Magnetic Domain States and Critical Sizes in the Titanomagnetite Series

Author:

Cych Brendan1ORCID,Paterson Greig A.1ORCID,Nagy Lesleis1ORCID,Williams Wyn2ORCID,Moskowitz Bruce3ORCID

Affiliation:

1. Department of Earth, Ocean and Environmental Sciences University of Liverpool Liverpool UK

2. School of GeoSciences Grant Institute University of Edinburgh Edinburgh UK

3. Department of Earth and Environmental Sciences Institute for Rock Magnetism University of Minnesota Minneapolis MN USA

Abstract

AbstractThe minerals carrying the magnetic remanence in geological samples are commonly a solid solution series of iron‐titanium spinels known as titanomagnetites. Despite the range of possible compositions within this series, micromagnetic studies that characterize the magnetic domain structures present in these minerals have typically focused on magnetite. No studies systematically comparing the domain‐states present in titanomagnetites have been undertaken since the discovery of the single vortex (SV) structure and the advent of modern micromagnetism. The magnetic properties of the titanomagnetite series are known to vary strongly with composition, which may influence the domain states present in these minerals, and therefore the magnetic stability of the samples bearing them. We present results from micromagnetic simulations of titanomagnetite ellipsoids of varying shape and composition to find the size ranges of the single domain (SD) and SV structures. These size ranges overlap, allowing for regions where the SD and SV structures are both available. These regions are of interest as they may lead to magnetic instability and “partial thermal remanent magnetization (pTRM) tails” in paleointensity experiments. We find that although this SD + SV zone occupies a narrow range of sizes for equidimensional magnetite, it is widest for intermediate (TM30‐40) titanomagnetite compositions, and increases for both oblate and prolate particles, with some compositions and sizes having an SD + SV zone up to 100s of nm wide. Our results help to explain the prevalence of pTRM tail‐like behavior in paleointensity experiments. They also highlight regions of particles with unusual domain states to target for further investigation into the definitive mechanism behind paleointensity failure.

Funder

Natural Environment Research Council

National Science Foundation

Publisher

American Geophysical Union (AGU)

Reference114 articles.

1. An experimental study of the titanomagnetite solid solution series

2. A thermomagnetic criterion for determining the domain structure of ferrimagnetics. Izvestiya Academy of Sciences USSR;Bol'Shakov A.;Physics of the Solid Earth,1979

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3