Deep Learning Forecasts Caldera Collapse Events at Kı̄lauea Volcano

Author:

McBrearty Ian W.1ORCID,Segall Paul1ORCID

Affiliation:

1. Department of Geophysics Stanford University Stanford CA USA

Abstract

AbstractDuring the 3 month long eruption of Kı̄lauea volcano, Hawaii in 2018, the pre‐existing summit caldera collapsed in over 60 quasi‐periodic failure events. The last 40 of these events, which generated Mw > 5 very long period (VLP) earthquakes, had inter‐event times between 0.8 and 2.2 days. These failure events offer a unique data set for testing methods for predicting earthquake recurrence based on locally recorded GPS, tilt, and seismicity data. In this work, we train a deep learning graph neural network (GNN) to predict the time‐to‐failure of the caldera collapse events using only a fraction of the data recorded at the start of each cycle. We find that the GNN generalizes to unseen data and can predict the time‐to‐failure to within a few hours using only 0.5 days of data, substantially improving upon a null model based only on inter‐event statistics. Predictions improve with increasing input data length, and are most accurate when using high‐SNR tilt‐meter data. Applying the trained GNN to synthetic data with different magma‐chamber pressure decay times predicts failure at a nearly constant stress threshold, revealing that the GNN is sensing the underling physics of caldera collapse. These findings demonstrate the predictability of caldera collapse sequences under well monitored conditions, and highlight the potential of machine learning methods for forecasting real world catastrophic events with limited training data.

Publisher

American Geophysical Union (AGU)

Reference50 articles.

1. Relational inductive biases, deep learning, and graph networks;Battaglia P. W.;arXiv preprint arXiv:1806.01261,2018

2. Can Deep Learning Predict Complete Ruptures in Numerical Megathrust Faults?

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3