A Compositional Global Implicit Approach for Modeling Coupled Multicomponent Reactive Transport

Author:

Seigneur Nicolas12ORCID,Socié Adrien2ORCID,Mayer K. Ulrich2ORCID

Affiliation:

1. MINES ParisTech Centre de Géosciences PSL University Fontainebleau France

2. Department of Earth, Ocean and Atmospheric Sciences University of British Columbia Vancouver BC Canada

Abstract

AbstractReactive transport modeling has become widely used to help improve understanding of hydrogeochemical processes from the pore scale to the watershed scale. In recent years, the scope of reactive transport applications has increased toward a higher level of complexity and process coupling. For example, the production and consumption of water as well as porosity evolution associated with the dissolution and precipitation of hydrated minerals can impact system evolution. Waste rock weathering, carbon sequestration, or the degradation of engineered barriers in radioactive waste repositories all constitute applications in which geochemistry and hydrodynamics can strongly influence each other. For these purposes, the traditional formulation of reactive transport simulators, which decouples groundwater flow and reactive transport processes, is limited. We present a global implicit compositional approach, which integrates the flow processes directly into the reactive transport and geochemical framework. This approach solves the flow field implicitly with the reactive transport equations, simultaneously accounting for water consumption and production due to geochemical reactions. Applications show that the model allows tackling complex reactive transport problems while accounting for intra‐aqueous reactions, redox reactions, and reactions involving mass transfer with the gas and solid phases. The presented simulations also demonstrate that the compositional and traditional approaches yield similar results for complex geochemical systems with relatively low reactivity.

Publisher

American Geophysical Union (AGU)

Subject

Water Science and Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3