Deep Learning for Simultaneous Inference of Hydraulic and Transport Properties
Author:
Affiliation:
1. Department of Energy Science and Engineering Stanford University Stanford CA USA
2. Scientific Computing and Artificial Intelligence (SCAI) Laboratory University of Notre Dame South Bend IN USA
Funder
National Science Foundation
TotalEnergies
Advanced Research Projects Agency - Energy
Publisher
American Geophysical Union (AGU)
Subject
Water Science and Technology
Link
https://onlinelibrary.wiley.com/doi/pdf/10.1029/2021WR031438
Reference69 articles.
1. Identification of Contaminant Source Location and Release History in Aquifers
2. A hybrid simulation–optimization approach for solving the areal groundwater pollution source identification problems
3. Scripting MODFLOW Model Development Using Python and FloPy
4. Efficient gHMC Reconstruction of Contaminant Release History
Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Deep learning-based inversion framework by assimilating hydrogeological and geophysical data for an enhanced geothermal system characterization and thermal performance prediction;Energy;2024-09
2. Integration of DDPM and ILUES for Simultaneous Identification of Contaminant Source Parameters and Non‐Gaussian Channelized Hydraulic Conductivity Field;Water Resources Research;2024-08-29
3. Coupled hydrogeophysical inversion through ensemble smoother with multiple data assimilation and convolutional neural network for contaminant plume reconstruction;Stochastic Environmental Research and Risk Assessment;2024-08-25
4. Ensemble variational Bayesian approximation for the inversion and uncertainty quantification of Darcy flows in heterogeneous porous media with random parameters;Journal of Computational Physics;2024-08
5. Non-gaussian hydraulic conductivity and potential contaminant source identification: A comparison of two advanced DLPM-based inversion framework;Journal of Hydrology;2024-07
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3