Evaluating BC Aging Processes in the Community Atmosphere Model Version 6 (CAM6)

Author:

Shen Wenxiang12ORCID,Wang Minghuai12ORCID,Liu Yawen12ORCID,Dong Xinyi12ORCID,Zhao Delong13ORCID,Yue Man12,Tian Ping3ORCID,Ding Deping3

Affiliation:

1. School of Atmospheric Sciences Nanjing University Nanjing China

2. Joint International Research Laboratory of Atmospheric and Earth System Sciences and Institute for Climate and Global Change Research Nanjing University Nanjing China

3. Beijing Weather Modification Center Beijing China

Abstract

AbstractThe uncertainty of the climatic effect of Black carbon (BC) remains large. One critical uncertainty source that needs to be captured is BC aging. Here we use the Community Atmosphere Model version 6 (CAM6) configured with the four‐mode version of the Modal Aerosol Module (MAM4) to evaluate the modeled BC aging process with recent laboratory and in‐situ measurements over China. As revealed by the comparison of BC aging timescale and number fraction of aged BC against recent measurements, the modeled condensation aging timescale is estimated to be about 0.8 hr (17%) faster than the chamber measurement, and the diurnal variations of modeled BC aging degree are typically higher than observations mainly due to the fast increase in modeled BC aging degree during daytime. Further analysis shows that the condensation aging dominates (>70%) BC aging across China. More specifically, the condensation of secondary organic aerosol (SOA) vapor contributes most to BC aging over China. Slowing down BC aging increases the modeled surface BC concentration over remote Western China and BC burden, but hardly changes surface BC concentration over Eastern China. Our results suggest that BC aging representation in the MAM4 needs to be further improved toward slowing down the BC aging rate, especially the condensation aging by SOA, to improve the BC simulation over remote areas and its impact on BC transport in MAM4.

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3