Spatial Heterogeneity of Aerosol Effect on Liquid Cloud Microphysical Properties in the Warm Season Over Tibetan Plateau

Author:

Zhao Pengguo12ORCID,Zhao Wen3,Yuan Liang1,Zhou Xin1ORCID,Ge Fei1ORCID,Xiao Hui4,Zhang Peiwen2,Wang Yuting1,Zhou Yunjun1

Affiliation:

1. Plateau Atmosphere and Environment Key Laboratory of Sichuan Province College of Atmospheric Science Chengdu University of Information Technology Chengdu China

2. Institute of Plateau Meteorology China Meteorological Administration Chengdu China

3. School of Cybersecurity Chengdu University of Information Technology Chengdu China

4. Guangzhou Institute of Tropical and Marine Meteorology China Meteorological Administration Guangzhou China

Abstract

AbstractThe effect of aerosol on liquid cloud microphysical properties over the Tibetan Plateau (TP) during the warm season is investigated by using aerosol index (AI) and cloud property parameters data. Distinct differences in aerosol effect on liquid cloud microphysical properties have been found between the northern Tibetan Plateau (NTP) and southernTibetan Plateau (STP). The composite liquid cloud droplet effective radius liquid cloud droplet effective radius (LREF) anomalies for positive AI events are positive in the NTP and negative in the STP. In both NTP and STP, when the AI anomalies are positive, the LREF anomalies are also positive, which suggests that the increased aerosol loading reduces the solar radiation reaching the ground and thus enhances the atmospheric stability, which reduces the cloud base height and makes the liquid cloud area thicker, which gives cloud droplets more space to grow by collision‐coalescence. This indicates that the aerosol radiative effect is not likely the reason causing the distinct differences of aerosol effects on liquid cloud properties between NTP and STP. Further analysis shows that in the STP, the LREF first increases and then decreases with the increase of AI, while in the NTP, the LREF always increases with the increase of AI, suggesting a spatial difference in aerosol microphysical effect. In the STP, the influence of aerosol on liquid clouds is mainly dependent on liquid water path and convective available potential energy, while in the NTP, the influence of aerosol on liquid cloud is more likely related to large aerosol particles.

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geophysics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3