Affiliation:
1. Plateau Atmosphere and Environment Key Laboratory of Sichuan Province College of Atmospheric Science Chengdu University of Information Technology Chengdu China
2. Institute of Plateau Meteorology China Meteorological Administration Chengdu China
3. School of Cybersecurity Chengdu University of Information Technology Chengdu China
4. Guangzhou Institute of Tropical and Marine Meteorology China Meteorological Administration Guangzhou China
Abstract
AbstractThe effect of aerosol on liquid cloud microphysical properties over the Tibetan Plateau (TP) during the warm season is investigated by using aerosol index (AI) and cloud property parameters data. Distinct differences in aerosol effect on liquid cloud microphysical properties have been found between the northern Tibetan Plateau (NTP) and southernTibetan Plateau (STP). The composite liquid cloud droplet effective radius liquid cloud droplet effective radius (LREF) anomalies for positive AI events are positive in the NTP and negative in the STP. In both NTP and STP, when the AI anomalies are positive, the LREF anomalies are also positive, which suggests that the increased aerosol loading reduces the solar radiation reaching the ground and thus enhances the atmospheric stability, which reduces the cloud base height and makes the liquid cloud area thicker, which gives cloud droplets more space to grow by collision‐coalescence. This indicates that the aerosol radiative effect is not likely the reason causing the distinct differences of aerosol effects on liquid cloud properties between NTP and STP. Further analysis shows that in the STP, the LREF first increases and then decreases with the increase of AI, while in the NTP, the LREF always increases with the increase of AI, suggesting a spatial difference in aerosol microphysical effect. In the STP, the influence of aerosol on liquid clouds is mainly dependent on liquid water path and convective available potential energy, while in the NTP, the influence of aerosol on liquid cloud is more likely related to large aerosol particles.
Publisher
American Geophysical Union (AGU)
Subject
Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geophysics
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献