Synergistic Effects of Upstream Disturbances and Oceanic Fronts on the Subseasonal Evolution of Western Pacific Jet Stream in Winter

Author:

Qian Shengyi1,Hu Haibo1ORCID,Ren Xuanjuan1ORCID,Yang Xiu‐Qun1ORCID,Yu Peilong23ORCID,Mao Kefeng4ORCID

Affiliation:

1. CMA‐NJU Joint Laboratory for Climate Prediction Studies Instituted for Climate and Global Change Research School of Atmospheric Science Nanjing University Nanjing China

2. College of Meteorology and Oceanography National University of Defense Technology Changsha China

3. Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/Key Laboratory of Meteorological Disaster, Ministry of Education/Joint International Research Laboratory of Climate and Environment Change Nanjing University of Information Science and Technology Nanjing China

4. College of Advanced Interdisciplinary Studies National University of Defense Technology Changsha China

Abstract

AbstractThe Western Pacific jet stream (WPJS) is an essential part of atmospheric circulation in winter, which significantly influences the weather and climate of the North Pacific and North America. In this paper, the characteristics and mechanism of WPJS subseasonal variation in winter are investigated. The upstream atmospheric disturbances in the East Asian polar‐front jet and subtropical jet merge over the Northwestern Pacific to form the subseasonal variability in WPJS, which has a significant period of 40–60 days. During the positive phase events of subseasonal WPJS, the convergence position of the upstream atmospheric disturbances shifts southwardly accompanied with the local enhancement and eastward extension of subseasonal WPJS. On the other hand, the subseasonal WPJS divides into the southern and northern westerly branches during the negative phase events. By the horizontal propagation of local Eliassen‐Palm fluxes in the upper atmosphere, the northward drift of the upstream atmospheric disturbances convergence dominates the delayed acceleration of the northern upper westerly branch. However, the intensification of atmospheric baroclinicity and upward baroclinic energy caused by the leading strong subtropical frontal zone determine the acceleration of the southern upper westerly branch.

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3