The Role of the Quasi 5‐Day Wave on the Onset of Polar Mesospheric Cloud Seasons in the Northern Hemisphere

Author:

Thurairajah Brentha1ORCID,Bailey Scott M.1ORCID,Harvey V. Lynn23ORCID,Randall Cora E.23ORCID,France Jeff A.4

Affiliation:

1. Bradley Department of Electrical and Computer Engineering Center for Space Science and Engineering Research Virginia Tech Blacksburg VA USA

2. Laboratory for Atmospheric and Space Physics University of Colorado Boulder CO USA

3. Department of Atmospheric and Oceanic Sciences University of Colorado Boulder CO USA

4. White Ridge Solutions LLC Frederick MD USA

Abstract

AbstractThe quasi 5‐day wave (Q5DW) with zonal wavenumber 1 is a dominant planetary wave (PW) oscillation in the polar summer mesospheric temperature and polar mesospheric cloud (PMC) fields. In this paper, the Q5DW signal derived from 16 years (2007–2022) of Microwave Limb Sounder temperature observations is used to investigate the role of this PW mode on the onset of PMC seasons in the northern hemisphere (NH). PMC data from the Cloud Imaging and Particle Size (CIPS) instrument during this time indicates that NH PMC season onsets ranged from 15 to 28 May, with earliest onsets in 2013, 2015, 2019, 2020, 2021, and 2022. Except 2013 and 2022, the other four earlier onsets were also characterized by enhanced Q5DW activity. The wave amplification appears to be driven by baroclinic instability arising from the negative meridional gradient of potential vorticity in the high‐latitude summer mesosphere. CIPS data show that when the Q5DW was present at the beginning of the season, clouds formed preferentially in the cold troughs of the wave. We thus propose that the much colder troughs due to enhanced Q5DW activity in mid‐May of 2015, 2019, 2020, and 2021 influenced the timing of PMC onset in these years. While the 11‐year solar cycle, inter‐ and intra‐hemispheric coupling due to gravity wave and PW activity have been shown to contribute to earlier onset of PMC seasons in the NH, our analysis suggests that enhanced Q5DW activity also plays a major role.

Funder

National Aeronautics and Space Administration

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3