Observationally Constrained Modeling of Peroxy Radical During an Ozone Episode in the Pearl River Delta Region, China

Author:

Wang Jun123,Zhang Yanli124,Zhao Weixiong5ORCID,Wu Zhenfeng123,Luo Shilu123,Zhang Huina123,Zhou Huaishan123ORCID,Song Wei12ORCID,Zhang Weijun5,Wang Xinming1234ORCID

Affiliation:

1. State Key Laboratory of Organic Geochemistry Guangdong Key Laboratory of Environmental Protection and Resources Utilization Guangzhou Institute of Geochemistry Chinese Academy of Sciences Guangzhou China

2. CAS Center for Excellence in Deep Earth Science Guangzhou China

3. University of Chinese Academy of Sciences Beijing China

4. Center for Excellence in Regional Atmospheric Environment Institute of Urban Environment Chinese Academy of Sciences Xiamen China

5. Laboratory of Atmospheric Physico‐Chemistry Anhui Institute of Optics and Fine Mechanics Chinese Academy of Sciences Hefei P. R. China

Abstract

AbstractPeroxy radicals (RO2* = HO2 + RO2) play key roles in forming secondary air pollutants such as ozone, yet model underprediction of RO2* is a challenging radical closure problem. In this study, RO2* were measured by a dual‐channel peroxy radical chemical amplification system during an ozone episode in October 2018 at an urban site in the Pearl River Delta region, China. The box model based on the Master Chemical Mechanism severely underpredicted RO2* levels, particularly at night and under high nitric oxide (NO) conditions. The observed‐to‐modeled ratio of RO2* increased from ∼3 under 1 ppbv NO to ∼46 under >10 ppbv NO with a missing RO2* source up to 5.8 ppbv hr−1. Observation data were used to constrain model predictions, and the results reveal that constraining nitrous acid (HONO) or glyoxal/methylglyoxal could not improve predictions, while constraining nitrate radicals (NO3) or other oxygenated volatile organic compounds (OVOCs), particularly phenolic compounds and improvements in their gas‐phase mechanisms, could more effectively increase model‐simulated RO2* concentrations. When OVOCs, NO3, and HONO were constrained, the simulated RO2* concentrations increased to the greatest extent with an observed‐to‐modeled RO2* ratio of 1.9 during the day and 1.3 at night, mainly due to the interaction between OVOCs and NO3 radicals. As the underestimated NO3 levels and the unmeasured reactive organic gases, as well as their unknown oxidation mechanisms, are among the major reasons for the underestimation of RO2*, upgraded atmospheric chemistry involving more OVOC species and more accurate NO3 would improve model‐simulated RO2* concentrations, especially during nighttime.

Funder

Guangzhou Municipal Science and Technology Bureau

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3