Observing System Choice Can Minimize Interference of the Biosphere in Studies of Urban CO2 Emissions

Author:

Lal Raj M.1ORCID,Kort Eric A.1ORCID

Affiliation:

1. Climate and Space Sciences and Engineering University of Michigan Ann Arbor MI USA

Abstract

AbstractCities around the world have introduced initiatives to reduce CO2 emissions. Atmospheric observations can provide evaluation and assessment of these initiatives by quantifying emissions, considering local sources and sinks. The relative importance of the urban biosphere, which can act as both a source (respiration) and sink (photosynthesis) of CO2, has previously been suggested to strongly impact urban CO2 measurements, confounding the ability to use observations to study fossil emissions. However, if using an observing framework that measures a local urban background and the direct urban core outflow, for example, along a downwind airborne transect, the biosphere’s role may be minimized. Here, we combine real, airborne observations of CO2 downwind of select cities in the Northeast US with high‐resolution, back‐trajectory modeling and spatially and temporally resolved surface biosphere and fossil fuel fluxes to characterize the relative biosphere importance to urban CO2 profiles. We show the biosphere influence using this urban observing system to be small, averaging only 15% of the local CO2 enhancement annually, <10% outside of summer, and with a maximum influence of 29% in summer when the biosphere drawdown is most pronounced. Furthermore, when considering two biosphere models that differ by >80%, the impact on observed urban CO2 signals is reduced to only 12% on average. Urban observing frameworks that utilize this local background approach—including those via aircraft or satellite observations—can minimize the biosphere's influence and thus help facilitate robust assessments of urban fossil fuel CO2 emissions.

Funder

National Institute of Standards and Technology

National Aeronautics and Space Administration

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3