Key Factors Determining the Formation of Sulfate Aerosols Through Multiphase Chemistry—A Kinetic Modeling Study Based on Beijing Conditions

Author:

Wang Tao12,Liu Yangyang1,Zhou Shengqian3ORCID,Wang Guochen1,Liu Xiansheng4,Wang Longqian1,Fu Hongbo1ORCID,Chen Jianmin1ORCID,Zhang Liwu12ORCID

Affiliation:

1. Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather Department of Environmental Science & Engineering Fudan University Shanghai China

2. Shanghai Institute of Pollution Control and Ecological Security Shanghai China

3. Center for Aerosol Science and Engineering Department of Energy, Environmental and Chemical Engineering Washington University in St. Louis St. Louis MO USA

4. Institute of Environmental Assessment and Water Research (IDAEA‐CSIC) Barcelona Spain

Abstract

AbstractSevere haze in Beijing is characterized by the rapid formation of sulfate via the multiphase oxidation of SO2. While many factors, including aerosol oxidants and atmospheric variables, were discovered and investigated, their relative importance remains unclear. Herein, based on the field observation data obtained in Beijing, China, we developed a kinetic model to explore the key factors that determine the multiphase formation of sulfate. Sensitivity tests give the kinetics of each oxidation pathway varying with pH and temperature, based on which the total sulfate formation rate at room temperature (298 K) is calculated to be generally greater than that at standard temperature (273 K), especially during nighttime. Interfacial oxidants are responsible for sulfate formation within a wide pH range, and transition metal ions become more efficient with increased temperature. The multiphase chemistry is additionally affected by aerosol liquid water content (ALWC), particle radius (Rp), and ionic strength (IS). Within the usual aerosol acidity, the kinetic discrepancy induced by different ALWC levels is more significant at the lower temperature, in contrast to the temperature dependence related to Rp, and the effect of IS depends highly on pH. Machine learning reveals the potential importance of temperature, acidity, and Rp. Temperature and acidity are impactful for the formation of both aqueous and interfacial sulfates, whereas Rp only affects the interfacial processes. The discrepancy between nighttime and daytime is considered throughout this study. Overall, this study reveals the key factors for multiphase sulfate formation and is recommended for kinetic evaluation in future laboratory research.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shanghai Municipality

China Postdoctoral Science Foundation

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Unveiling the Role of Carbonate Radical Anions in Dust‐Driven SO2 Oxidation;Journal of Geophysical Research: Atmospheres;2024-01-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3