An Intensity and Size Phase Space for Tropical Cyclone Structure and Evolution

Author:

Casas Eleanor G.1ORCID,Tao Dandan12,Bell Michael M.1ORCID

Affiliation:

1. Colorado State University Fort Collins CO USA

2. University of Bergen Bergen Norway

Abstract

AbstractIntensity and size are important to characterize a tropical cyclone (TC), but there are a wide variety of ways that both metrics are defined. TC intensity can refer to either a maximum sustained wind speed at some height level or central surface pressure minimum, and TC size may refer to the radius of maximum wind, the radius of gale force wind, or be based on other criteria. While different definitions of TC intensity and size have useful applications, there are varying amounts of redundant information and covariations between some size and intensity variables that make investigating physical relationships more challenging. In this study, we use aircraft observations and Best Track information to calculate an empirical orthogonal function analysis that yields new, orthogonal metrics of TC intensity and size. The new, linearly independent metrics reduce a seven‐dimensional space of co‐varying parameters into a simplified, two‐dimensional phase space in which key TC structural changes can be visualized and historically contextualized. Additionally, our analysis introduces a new parameter that is a simplified measure of the wind decay outside the radius of maximum tangential velocity. We show that this decay parameter is nearly orthogonal to the new intensity and size metrics and is useful for identifying TC maturity. We demonstrate the utility of the new phase space by first comparing the structural evolution of the large Hurricane Rita (2005) and small Hurricane Charley (2004) using observations, as well as comparing two modeling simulations of Hurricane Rita with different initial conditions in the phase space.

Funder

Office of Naval Research

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3