Mechanisms of Ageostrophic Wind Convergence in the Boundary Layer of Coastal Warm‐Sector Extreme Heavy Rainfall in South China

Author:

Xia Fan1ORCID,Huang Xiaogang12ORCID,Fei Jianfang1,Wang Ju1,Cheng Xiaoping1,Zhang Chi3

Affiliation:

1. College of Meteorology and Oceanography National University of Defense Technology Changsha China

2. Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC‐FEMD) Nanjing University of Information Science &Technology Nanjing China

3. Units 93886 of PLA Urumqi China

Abstract

AbstractThe South China coast has a high incidence of warm‐sector heavy rainfall (WSHR) events. The ageostrophic winds in the boundary layer in most of these events associated with the southwesterly boundary layer jets (BLJs) mainly exhibit strong convergence at rainfall area. In this paper, we analyze two case studies of WSHR in May 2013 and May 2015, which occurred in similar synoptic environments but varied in intensity, extent, and duration of rainfall, where the ageostrophic winds are the confrontational confluence and asymptotic confluence pattern, respectively. ERA‐5 reanalysis data and the diagnostic equation of ageostrophic wind are used to examine the factors affecting the ageostrophic winds in the northern land region and the southern offshore region of the rainfall. The results suggest that land‐sea contrast leads to the convergence of ageostrophic winds in the rainfall area. Boundary layer friction dominates the northeasterly ageostrophic winds on land. The diurnal variation of BLJs dominates the ageostrophic winds and their diurnal variation at sea. It can contribute southwesterly or southeasterly ageostrophic winds, so the phase difference between the land and sea forms confrontational or asymptotic confluence, respectively. BLJs with different intensities, extents, and diurnal variations can lead to different ageostrophic wind patterns and their confluence modes. The land‐sea thermal contrast can directly affect ageostrophic winds, and it can also affect the diurnal variation of BLJs, thus affecting the ageostrophic winds and their confluence mode. It is further verified that the BLJs and thermal forcing are important in WSHR processes in South China.

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3